
Cybersecurity Guidelines for
Software Development & Assessment

BV-SW-200 / 20170609

The Cybersecurity Guidelines for Software Development and Assessment, as
well as all information included within, are protected by copyright and are the
exclusive property of Bureau Veritas. These Cybersecurity Guidelines are meant
to be a freely downloadable document. However, and notwithstanding anything
to the contrary, all intellectual property rights related to this document including
but not limited to the names, service marks, trademarks, inventions, logos and
copyrights of Bureau Veritas and its affiliates, are and shall remain the sole
property of Bureau Veritas or its affiliates and shall not be used by any person
or entity, except solely to the extent that this person or entity obtains the prior
written approval of Bureau Veritas and then only in the manner prescribed by
Bureau Veritas.

No part of this document shall be modified in any form and by any means in
any part of the world, without the prior written consent of Bureau Veritas. In
particular, Bureau Veritas cannot be held liable for any update, modification or
other amendment or alteration of this document by any person or entity for any
reason whatsoever. No person or entity using this document shall contest the
validity of the rights or take any action that might impair the value or goodwill
associated with the marks or the image or reputation of Bureau Veritas or its
affiliates. Any person or entity downloading or using this document shall take
all necessary steps to ensure that it operates at all times in accordance with all
applicable data protection laws and regulations.

In no event shall Bureau Veritas, its agents, consultants, and subcontractors, be
liable for special, indirect or consequential damages resulting from or arising out
of the use of these Cybersecurity Guidelines, including, without limitation, loss of
profit or business interruptions, however these may be caused.

The user shall indemnify and hold harmless Bureau Veritas against any and
all claims from third parties arising from or in connection to its use of this
document.

Every effort is made to provide general information. However, Bureau Veritas
does not guarantee the accuracy, completeness, adequacy or usefulness of
the content of the document, including but not limited to, any information,
product, service or process disclosed herein. Bureau Veritas hereby disclaims
all warranties and guarantees, whether expressed or implied, including any
warranty of merchantability, fitness for a particular purpose or use, or non-
infringement of third party rights with respect to the documents provided.

Copyright © 2017 BUREAU VERITAS, All rights reserved.
Published by BUREAU VERITAS SA.
Co-written by BUREAU VERITAS SA and List, an institute of CEA Tech.

4 Cybersecurity Guidelines for Software Development & Assessment

CONTENTS

1. INTRODUCTION	 6

1.1. Purpose of these guidelines	 6
1.2. State of the art of software security assessment	 7
1.3. Scope	 8
1.4. Guidelines structure	 8
1.5. Definitions	 9
1.6. Abbreviations	 11
1.7. How to read the objectives	 12

2. �DEVELOPMENT & OPERATION OBJECTIVES 	 13
AND ACCEPTANCE CRITERIA

2.1 System architecture	 15
2.2 Design & tool management 	 18
2.3 Checking: scans and analyses	 23
2.4 Operations: monitoring and evolutions	 25

APPENDIX	 29

Appendix 1 - Security assessment activity and associated checklist	 30
Appendix 2 - Example of threats identification & classification	 31
Appendix 3 - References & existing cybersecurity frameworks 	 34

• References	 34
• Existing security standards and frameworks 	 34

4 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 5

INTRODUCTION
1.1. Purpose of these guidelines	 6

1.2. �State of the art of software
security assessment	 7

1.3. Scope	 8

1.4. Guidelines structure	 8

1.5. Definitions	 9

1.6. Abbreviations	 11

1.7. How to read the objectives	 12

6 Cybersecurity Guidelines for Software Development & Assessment

1. Introduction

Software components are being used, at scale, to provide intelligent func-
tionalities in complex systems. This ubiquity, combined with a sharp rise in
cyber-threats, amplifies the need to identify clear and effective security prac-
tices for the development and assessment of software components.

NOTE: in the following, the definition of words written in UPPER CASE LETTERS is given in the Defini-
tions section.

Figure 1. Generic computer-based system breakdown

1.1. Purpose of these guidelines
This document describes a list of objectives to develop, verify, and operate
a SOFTWARE SYSTEM that satisfies an intended level of SECURITY. This
includes:

 the CONFIDENTIALITY and INTEGRITY of the data processed by the system,

 the AVAILABILITY of the service provided by the system.

The target audience of this document is mainly (but is not restricted to):
software developers, product managers, security teams, quality assessors
and software security auditors/assessors.

The distinctive feature of these guidelines is the focus on the use of SOFTWARE
SUPPORT TOOLS to satisfy the SOFTWARE SYSTEM development and assess-
ment objectives, especially for the analysis of the program structure and CODE.

The level of SECURITY required by the SOFTWARE SYSTEM, and thus the scope
and strength of its objectives, is determined through a risk-based methodology.

Computer-based System

Hardware System

System Software (Operating System)

Software
System

Software System

Software Component

Software
Unit

Software
Unit

Software
Component

Software
Component

Software
System

6 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 7

The present guidelines complement the BV-SW-100 guidelines on software
performance («Software Development & Assessment Guidelines»), and can
be deployed accordingly. The use of the BV-SW-100 is in particular helpful as
a reference for availability (reliability) guarantees.

This document was designed to help the target audience to develop secure
mission-critical software in industrial control systems (e.g. embedded
softwares in vehicles, connected objects, process control...). It can also be
applied to consumer electronics, enterprise computing systems, and other
software-intensive systems.

Within the scope of these guidelines, a certificate of compliance may be issued.

1.2. State of the art of software security assessment
A classical SECURITY assessment of a SOFTWARE SYSTEM is generally based
on distinct activities:

 �identification of the security threats in regards of the intended purpose
of the SOFTWARE SYSTEM;

 �independent evaluations of an organization’s SECURITY, designed to test
its defenses as a whole, including human factors;

 �penetration tests and SECURITY audits: assessment of a digital system’s
SECURITY, by way of its resistance to attacks;

 �vulnerability scans: monitoring of databases for publicly-known vulne-
rabilities that might impact a digital system;

 �organizational audits: assessment of the SECURITY governance.

From the technical SECURITY foundations underlying these activities, the
present guidelines build a concise list of objectives and acceptance criteria
for SOFTWARE SYSTEMS, following the SECURITY by design concept. They
leverage the demonstrated advantages of a trusted whitebox approach to set
objectives on the development process and on some specific verification acti-
vities.

Current computing technologies (e.g. CODE analysis tools) can perform deep
examinations of the program, efficiently supporting SOFTWARE SYSTEM veri-
fication activities. This document takes into account the use of those tools
and their associated benefits, into a more general development and assess-
ment strategy.

This approach is complementary to the performance assessment process
from BV-SW-100. In particular safety processes and results demonstrably
reduce the effort of SECURITY assessment activities.

www.bureauveritas.com/white-papers/software-development-assessment
www.bureauveritas.com/white-papers/software-development-assessment

8 Cybersecurity Guidelines for Software Development & Assessment

1.3. Scope
SECURITY has to be managed holistically, and in particular SECURITY OBJEC-
TIVES have to be divided between SOFTWARE SYSTEMS and hardware.

The present guidelines apply to SOFTWARE SYSTEMS involved in COMPU-
TER-BASED SYSTEMS, whatever their purpose of service. They cover the
whole lifecycle of these systems, from specification to operation, mainte-
nance and decommission.

The acceptable scope for the application of the guidelines is further discussed
in Section 2.1 dealing with the system architecture analysis.

The results of the guidelines have to be completed with a hardware SECURITY
analysis. Hardware analyses can be performed for instance based on IEC
15408 or IEC 62443. They usually encompass:

 �the definition of the methodology;

 �the identification of an evaluation perimeter;

 �the realization of verification and testing activities;

 �the summary of the results and the exported constraints on the system
or software.

Therefore specific requirements of the interfaces between SOFTWARE
SYSTEMS and hardware is out of the scope of the present guidelines.

The objectives to be assessed are summarized in the dedicated Checklist
section (cf. appendix 1 page 30).

1.4. Guidelines structure
The structure of the guidelines is the following:

1
System

architecture
objectives

2
Design & tool
management

objectives

3
Checking
objectives

4
Operation
objectives

8 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 9

1.5. Definitions
 �AUTHENTICATION: provision of assurance that a claimed characteristic of
an entity is correct (ISO 27000).

 �AVAILABILITY: property of being accessible and usable upon demand by an
authorized entity (ISO 27000).

 �BLACK BOX TESTING: testing, either functional or non-functional, without
reference to the internal structure of the software system, software compo-
nent or software unit.

 �CODE: implementation of specific data on a specific computer program in a
symbolic form, such as source code, object code, or executable code.

 �COMPROMISSION: result of the occurrence of an un-mitigated SECURITY
THREAT.

 �COMPUTER-BASED SYSTEM: integrated set of hardware and software
systems, including the system software, that provides the capability of
satisfying a stated need or objective.

 �CONFIDENTIALITY: property that information is not made available or
disclosed to unauthorized individuals, entities, or processes (ISO 27000).

 �COTS (“component off-the-shelf”): software component that already exists
and is not developed specifically for the current project or computer-based
system.

 �DETAILED DESIGN: logic continuation of the preliminary design, considered
as a process of modelling, usually with the express purpose of isolating one
or more attribute(s) of the software, to prevent specific interactions and
cross-coupling interference.

 �INFORMATION FLOW: pattern in which information is passed within and
between SOFTWARE UNITS, SOFTWARE COMPONENTS, and SOFTWARE
SYSTEMS.

 �INTEGRITY: property of safeguarding the accuracy and completeness of
assets (ISO 27000).

 �FEARED EVENT: undesired event that affects the reliability, availability,
maintainability, safety and/or SECURITY of a computer-based system.

 �PENETRATION TEST: specific TESTING activity where SECURITY OBJEC-
TIVES are evaluated during the execution of a COMPUTER-BASED SYSTEM.

 �PROGRAMMABLE ELECTRONIC (COMPUTER-BASED): device based on
computer technology that includes hardware, software, input and output
units.
NOTE: this term covers microelectronics devices based on one or more central processing units
(CPUs) together with associated memories, drivers, etc.

 �SDLC (Security Development Life Cycle): process designed to increase resi-
liency and trustworthiness toward a product or a SOFTWARE SYSTEM.

10 Cybersecurity Guidelines for Software Development & Assessment

 �SECURITY (CYBERSECURITY): items related to external attacks driven by
PROGRAMMABLE ELECTRONIC. SECURITY does not include SAFETY objec-
tives.

 �SECURITY OBJECTIVES: set of counter-measures to SOFTWARE THREATS.

 �SECURITY REQUIREMENTS: set of properties of the TARGET OF EVALUA-
TION that indicate how it meets its SECURITY OBJECTIVES.

 �SECURITY THREAT: external FEARED EVENT that can affect the confiden-
tiality, integrity, availability and/or authenticity of a SOFTWARE COMPO-
NENT or SOFTWARE SYSTEM.

 �SOFTWARE CATEGORY: classification of software systems and software
components depending on the impact of feared events on the COMPU-
TER-BASED SYSTEM in which they are integrated.

 �SOFTWARE (SECURITY) CHECKING: a set of activities organized to evaluate
whether a SOFTWARE COMPONENT implementation satisfies a set of
SECURITY REQUIREMENTS. SOFTWARE CHECKING encompasses STATIC
ANALYSIS, TESTING, and PENETRATION TESTING.
NOTE 1: in this document, SOFTWARE CHECKING is the process dedicated to the evaluation of a
product, whereas VERIFICATION is the process dedicated to the evaluation of the activities that
develop this product (i.e. process verification).

 �SOFTWARE COMPONENT: any identifiable part of a computer program.
NOTE: three terms identify the software decomposition. The top level is the software system. The
lowest level that is not further decomposed is the software unit. Any level of composition, including
the top and bottom levels, can be called a software component.

 �SOFTWARE SYSTEM: integrated collection of software components orga-
nized to accomplish a specific function or set of functions.

 �SOFTWARE SUPPORT TOOL: software tool that supports a phase of the
software development lifecycle. Software tools may be divided into the
following classes (IEC 61508):

• �T1 generates outputs that do not affect neither the executable code nor
the data files of the software system;
NOTE 1: T1 examples include text editors, requirements and design support tools without automa-
tic code generation capabilities, and configuration tools.

• �T2 supports the test or verification of the design or executable code,
where the tool may fail to detect defects, but cannot directly create errors
neither in the executable code nor in the data files of the software system;
NOTE 2: T2 examples include test harness generators, test coverage measurement tools, and static
analysis tools.

• �T3 generates outputs that become part of the executable code and/or the
data files of the software system.
NOTE 3: T3 examples include code generators, compilers, linkers, and loaders.

 �SOFTWARE THREAT: SECURITY THREAT that related specifically to a
SOFTWARE SYSTEM, a SOFTWARE COMPONENT or a SOFTWARE UNIT.

10 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 11

 �SOFTWARE UNIT: software component that is not subdivided into other
components.

 �STATIC ANALYSIS: subset of software checking activities where the
software (i.e. a software unit, software component or software system) is
not executed (e.g. code inspections, code analysis, software walkthroughs,
software metrics, complexity analyses, etc.).

 �OPERATING SYSTEM (or system software, also known as kernel): software
component of the computer-based system that performs internal func-
tions of the integrated programmable electronic device as opposed to the
application software (software system) that provides external functions (as
intended by an external user and/or device).

 �TESTING: a subset of software checking activities where the software (i.e.
a software unit, software component or software system) is executed to
evaluate its actual behaviour (e.g. unit tests, integration tests, acceptance
tests, etc.).
NOTE: functional validation is achieved through testing.

 �TARGET OF EVALUATION: SOFTWARE SYSTEM being assessed, together
with its operational environment.

 �VERIFICATION: process of examining the result of a given activity to deter-
mine its conformity with the stated objectives for that activity.
NOTE: verification includes the common activities of requirement traceability.

 �WHITE BOX TESTING: testing based on an analysis of the internal structure
of the software system, software component or software unit.

1.6. Abbreviations
 API: Application Programming Interface

 �COTS: Component Off-The-Shelf

 �CERT: Computer Emergency Response Team

 �CRC: Cyclic Redundancy Check

 �CVE: Common Vulnerabilities and Exposures

 �CWE: Common Weakness Enumeration

 �HMI: Human-Machine Interface

 �REX: Return on Experience

 �SC: Software Category

 �SDLC: Security Development Life Cycle

 �SR: SECURITY REQUIREMENTS

 �TOE: TARGET OF EVALUATION

12 Cybersecurity Guidelines for Software Development & Assessment

1.7. How to read the objectives
The following parts of the document indicates the objectives to be met.
Depending of the SOFTWARE CATEGORY (defined in section 2.1), objectives
might be applicable or not.

For instance:

OBJ_DES_080

Perform a cybersecurity oriented
analysis on each SOFTWARE
SUPPORT TOOL to ensure that it
does not have an impact on the
confidentiality, integrity & availability
of the SOFTWARE SYSTEM.
[SC1]

OBJ_DES_080

The analysis shall include a descrip-
tion of the interactions between the
tools and the SOFTWARE SYSTEM
(e.g. possible code modifications
introduced by the tool).
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

is an objective, identified OBJ_DES_080, required only if the SOFTWARE
CATEGORY 1 [SC1] is targeted.

Left column : objectives
Right column : acceptance criteria

12 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 13

DEVELOPMENT
& OPERATION
OBJECTIVES AND
ACCEPTANCE
CRITERIA
2.1 �System architecture 	 15

2.2 �Design & tool management 	 18

2.3 Checking: scans and analyses	 23

2.4 Operations: monitoring and evolutions	 25

14 Cybersecurity Guidelines for Software Development & Assessment

The objectives of this section are targeted at particular phases of the software
lifecycle. The 4 main identified parts are:
 system architecture definition;
 design (including tools management);
 checking;
 operations.

The following scheme shows this organisation:

SYSTEM
OBJECTIVES

Identify & draw
the software

system
architecture

So
ft

w
ar

e
ar

ch
ite

ct
ur

e

Design
security

functions Review
common

weaknesses

Monitor
incidents

Test the
SOFTWARE

SYSTEM

Manages
Updates

Identify
templates
& coding
standards

Qualify
Support

Tools

Validate
COTS

So
ur

ce
 c

od
e

So
ur

ce
 c

od
e

or
 e

xe
cu

ta
bl

es

In
te

gr
at

io
n

of
 C

O
TS

Identify all trust
boundaries

Perform a
threat analysis

Derive security
requirements &

software category

DESIGN
OBJECTIVES

CHECKING
OBJECTIVES

OPERATION
OBJECTIVES

Figure 2. Global organisation of the software security management.
(Credits: Bureau Veritas)

The definition of the software lifecycle has to be adapted to each SOFTWARE
SYSTEM, based on the sequential software V cycle or within agile development
methodologies.

The objectives documented hereunder are validated by one or more acceptance
criteria. Objectives are meant as a high-level description of the desired func-
tionalities. Acceptance criteria define the type of artefacts that can be used to
provide clear and traceable guarantees of the correct implementation of desired
functionalities.

2. �Development & operation objectives
and acceptance criteria

14 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 15

The COMPUTER-BASED SYSTEM may be subject, as part of FEARED EVENTS, to
various SECURITY THREATS. It is therefore crucial to perform a threat analysis
on each SOFTWARE COMPONENT at the beginning of the software develop-
ment cycle, after the architecture design and the definition of the functional
requirements of the SOFTWARE SYSTEM (this Design objective is covered under
OBJ_SYS_020, page 17).

This analysis allocates a SOFTWARE CATEGORY to each of the SOFTWARE COMPO-
NENTS or to the SOFTWARE SYSTEM, based on the number and severity of the
identified threats.

The following SOFTWARE CATEGORIES table is given as an example, and can be
extended depending on the maturity of an existing SDLC process and the granula-
rity of security requirements:

SOFTWARE CATEGORY Effects

0 �Basic SECURITY requirements. Designed for a low overhead and easy integration
of security requirements into an existing development process.

1 �Advanced SECURITY requirements. It will require a bigger effort, but will result in
heightened confidence in the SECURITY of critical software.

Table 1: Example of a SOFTWARE CATEGORY scale reference

2.1 System architecture

16 Cybersecurity Guidelines for Software Development & Assessment

OBJ_SYS_010

Identify the SECURITY perimeter of
the SOFTWARE SYSTEM and of each
individual SOFTWARE COMPO-
NENTS. This step allows the deriva-
tion of a threat model and the defi-
nition of a SOFTWARE CATEGORY.
[SC0,SC1]

OBJ_SYS_010

The perimeter includes:

 �external and internal interfaces
(e.g. between SOFTWARE COMPO-
NENTS, between the SOFTWARE
SYSTEM and hardware compo-
nents)with their data type;
 [SC0,SC1]

 �external entities allowed to perform
actions on the SYSTEM and/or a
SOFTWARE COMPONENT (e.g.
users, other hardware or software
systems);
[SC0,SC1]

 ��external dependencies and COTS
linked to the COMPONENT or
the SYSTEM and their current
SECURITY status;
[SC0,SC1]

 �data flow (e.g. functionalities
call, network traffic, storage I/O)
that an attacker may manipulate
to COMPROMISE a SOFTWARE
COMPONENT or the SYSTEM;
[SC0,SC1]

 �data stores (e.g. memory, shared
memory, database) and control
mechanisms that might be
attacked by SECURITY THREATS;
[SC0,SC1]

 �trust boundaries between
SOFTWARE COMPONENTS or
SOFTWARE SYSTEMS.
[SC0,SC1]

OBJECTIVES ACCEPTANCE CRITERIA

16 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 17

OBJ_SYS_020

Perform system- and component-
level threat analysis that includes
defining a SOFTWARE CATEGORY
for the SOFTWARE SYSTEM and
performing threat analysis for
the SOFTWARE COMPONENTS it
includes. It is necessary to handle
this analysis at the system level to
take into account all the contribu-
tions of the hardware and software
composing the system.

This analysis shall result in a
categorization of the SOFTWARE
COMPONENTS based on their
SOFTWARE CATEGORY, and in a
collection of identified threats and
associated security requirements.
[SC0,SC1]

NOTE: the Appendix 2 - Example of threats iden-
tification & classification provides an example of
such a threat analysis.

OBJ_SYS_020

The threat analysis can be done
using an existing robust methodo-
logy (e.g.STRIDE, OCTAVE, Strike)
or using a proprietary/in-house
method.

It shall be based on the security
perimeter previously identified and
shall result in a documentation
including identified threats and
associated security requirements.
When no security requirements are/
can be proposed, the reasons shall
be documented.
[SC0,SC1]

OBJECTIVES ACCEPTANCE CRITERIA

OBJ_SYS_030

Arbitrate performance and SECURITY
trade-offs.
If performance and SECURITY requi-
rements are incompatible for a given
SOFTWARE COMPONENT, the design
of the COMPUTER-BASED SYSTEMS
shall:

 analyze the incompatibility;

 �identify the risks due to either
performance or SECURITY prioriti-
zation;

 �when relevant, deport the discarded
performance or SECURITY require-
ments onto another COMPONENT
of the COMPUTER-BASED SYSTEM.

	 [SC0,SC1]

OBJ_SYS_030

The acceptance criteria shall
examine:

 �the documentation of the incom-
patibilities;

 �the documentation of the arbi-
tration and of its impact on the
SOFTWARE SYSTEM.
[SC0,SC1]

18 Cybersecurity Guidelines for Software Development & Assessment

OBJ_DES_010

Design and deploy adequate
SECURITY functions.

In particular the SOFTWARE
COMPONENT shall make use of
existing SECURITY function inven-
tories, such as the one from section
5.5 of ANSSI-CSPN-NOTE-01/2,
part 2 of ISO/IEC 15408 or RGS
Appendix B. This can include:
reliable communication mecha-
nisms, cryptographic support, and
data and resource protection func-
tions.
[SC0,SC1]

OBJ_DES_010

One or more security functions
shall be identified for each security
requirement. The effectiveness
of each security function to fulfill
the security requirements shall
be documented. The acceptance
criteria shall also take into account
the following points:

 �the effective deployment of the
security functions;

[SC0,SC1]

 �the documentation of the
SECURITY functions. A general
categorization can be used, inclu-
ding for example:

• �SECURITY auditing and
SECURITY management;

• communication;

• �cryptography, including
identification and
authentication;

• �data protection and data
privacy;

• �SECURITY function protection,
including hardware protections;

• clock management;

• resource usage.
	 [SC0,SC1]

OBJECTIVES ACCEPTANCE CRITERIA

2.2 Design & tool management

18 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 19

OBJ_DES_020

Use and deploy adequate COTS.

In particular the SOFTWARE
COMPONENT shall:

 �use well-identified and robust
COTS libraries. Such COTS shall
be used according to their speci-
fied APIs;
[SC0,SC1]

 ��use COTS libraries for SECURITY
functions based on cryptography;
[SC0,SC1]

 �sanitize data and calls from/
to external dependencies with
low-confidence level, such as
proprietary drivers.
[SC1]

OBJ_DES_020

The acceptance criteria shall also
take into account the following
points:

 �when relevant, the existing track
record (deployment scale) of COTS
implementing the SECURITY func-
tions will be examined. COTS shall
comply with the Checking objec-
tives OBJ_CHE_010 and OBJ_
CHE_020;
[SC0,SC1]

 �when used as a high-criticality
SOFTWARE COMPONENT, the
SOFTWARE SYSTEM shall be
checked for inconsistent use of its
interfaces.
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

OBJ_DES_030

Use coding rules for the develop-
ment of the SOFTWARE COMPO-
NENTS.
[SC0,SC1]

OBJ_DES_030

The acceptance criteria shall also
take into account the following points:

 �dangerous constructions, such as
the one from NIST or MISRA recom-
mendations,shall be detected;
[SC0]

 �the acceptance criterion shall
examine the absence of dangerous
constructions by the use of tools;
[SC1]

 �code complexity shall be measured
with appropriate indicators, for
example:
• function size;
• number of conditional branches;
• size and number of stack adjusts
and shall be refactored to lowerize
the cyclomatic complexity of the
code.
[SC0]

20 Cybersecurity Guidelines for Software Development & Assessment

OBJ_DES_040

Deprecate dangerous functions
including unmaintained SOFTWARE
UNITS and SOFTWARE COMPO-
NENTS.
[SC0,SC1]

OBJ_DES_040

The acceptance criteria shall also
take into account the following
points:

 �The acceptance criterion shall
examine the absence of depre-
cated functions by using dedi-
cated code analysis tools. Modern
compilers shall also be configured
to warn against unsafe functions
at build-time, or perform automa-
tic substitution with more robust
functions. When no such confi-
guration is available, the reasons
shall be documented.
[SC0]

 �The acceptance criterion shall
examine the absence of depre-
cated functions by the use of
tools. If the confidence in the
tools results is not as expected,
a manual review shall be perfor-
med.
[SC1]

 �Unsafe but non-deprecated func-
tions shall also be checked for
and, whenever possible, replaced
by better-bounded functions.
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

20 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 21

OBJ_DES_050

Incorporate the use of applica-
tion defense mechanisms such
as compiler SECURITY options,
link-time armoring and load-time
defenses.
[SC0,SC1]

Any activity described in these
guidelines may be achieved either
manually or automatically using
SOFTWARE SUPPORT TOOLS,
usually chose and qualified during
the software design phase.

Manual Means

ADVANTAGES

The mastering of the activity is
ensured when carried out by an
expert vanced SECURITY requi-
rements. It will require a bigger
effort, but will result in more
confidence towards the SECURITY
of your software.

DISDVANTAGES

 �Tedious activity that may
degrade the quality of the
outputs

 �Completeness (no forgotten
case) is difficult to demonstrate

 ��Software checking results are
not immediate

Automatic Means

ADVANTAGES

 ���Repeatability
 �Completeness
 �Systematization
 ���Immediacy

DISDVANTAGES

 ��The tool management shall be
controlled by an expert

 �Human disengagement

 ���A qualification shall be perfor-
med to provide confidence in the
tool outputs

The usefulness of manual and
automatic means shall be analysed
for each activity to ensure that it is
correctly carried on.

OBJ_DES_050

The acceptance criterion shall
examine, when applicable, the
presence of:

 �compile-time defenses such as
stack guards, function fortifica-
tion and control-flow integrity
mechanisms;
[SC0,SC1]

 ��link-time defenses such as ASLR
(Address Space Layout Randomi-
zation);
[SC0,SC1]

 ��load-time defenses such as code
signing and verification.
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

22 Cybersecurity Guidelines for Software Development & Assessment

OBJ_DES_070

Operate the SOFTWARE SUPPORT
TOOL within its usage domain
(described throughout its user
manual) taking into account the
possible limitations or requi-
rements described in its safety
manual (and/or SECURITY manual).
[SC0,SC1]

OBJ_DES_080

Perform a cybersecurity oriented
analysis on each SOFTWARE
SUPPORT TOOL to ensure that it
does not have an impact on the
confidentiality, integrity & availabi-
lity of the SOFTWARE SYSTEM.
[SC1]

OBJ_DES_060

Identify each SOFTWARE SUPPORT
TOOL used at any step of the
software system development.
[SC0,SC1]

OBJ_DES_060

Identify each SOFTWARE SUPPORT
TOOL The acceptance criteria shall
document:

 �the name;

 �the version;

 �the purpose of the tool;

 ��the phase of the development
when the tool is used.
[SC0,SC1]

OBJ_DES_070

The acceptance criteria shall
document how and when the tools
are used. Those criteria include
configuration used for each tool
(e.g.parameters, scope of the
tool) and how they interact with
the SOFTWARE SYSTEM or the
SOFTWARE COMPONENTS. This
includes, when existing, the veri-
fication of all exported require-
ments given in the safety/SECURITY
manual.
[SC0,SC1]

OBJ_DES_080

The analysis shall include a descrip-
tion of the interactions between the
tools and the SOFTWARE SYSTEM
(e.g. possible code modifications
introduced by the tool).
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

22 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 23

2.3 Checking: scans and analyses

OBJ_CHE_010

Check the code for common
weaknesses.

The code of SOFTWARE COMPO-
NENTS shall be analyzed for
common weaknesses as docu-
mented by, e.g. CWE databases,
and screened for relevance to
the software system. SOFTWARE
SUPPORT TOOLS for code verifi-
cation, through testing or static
analysis, shall be used.
[SC1]

OBJ_CHE_010

The acceptance criteria for the
absence of common weaknesses
shall examine:

 �the scope of weaknesses verified,
in particular in relation to the
programming language and the
used libraries. Beyond intrin-
sic program errors (memory
handling, object manipulations),
special attention shall be paid to
control-flow and data-flow vulne-
rabilities;
[SC1]

 �the scope of the checks, especially
in relation to the SECURITY peri-
meters. Coverage information in
the case of testing, and reachabi-
lity information for static analysis,
will be examined;
[SC1]

 ��the use of formal verification
tools to check the absence of code
weaknesses is considered highly
efficient, in particular for critical
logic components and SECURITY
functions.
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

24 Cybersecurity Guidelines for Software Development & Assessment

OBJ_CHE_020

Perform SECURITY testing.

The SOFTWARE COMPONENT
shall undergo tests at SYSTEM-le-
vel. Tests shall perform extensive
explorations of behaviors of the
TARGET OF EVALUATION.
[SC0,SC1]

OBJ_CHE_020

The acceptance criterion for
SECURITY testing shall examine:

 �the test environment (hardware,
network) and its distance to the
TARGET OF EVALUATION;

 �the volume of test scenarios;

 �the coverage of tests, in particu-
lar for interfaces and SECURITY
functions. Coverage criteria shall
include the resistance to malfor-
med and unsanitized inputs;

 �the use of binary analysis tech-
niques for test case generation is
considered highly efficient.
[SC0,SC1]

OBJECTIVES ACCEPTANCE CRITERIA

24 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 25

OBJ_OPE_010

Monitor the SOFTWARE COMPO-
NENTS for dangerous behaviors and
implement safe fall-back options.
These may include, depending on
the SOFTWARE CATEGORY, graceful
termination, logging, or degraded
operation strategies.
[SC1]

OBJ_OPE_010

The acceptance criterion for the
monitoring of the SOFTWARE
SYSTEM shall examine:

 �the amount of information avai-
lable for e.g. forensics purposes;
[SC1]

 ��the scope of behaviors monitored,
in particular in relation to the
programming language and the
used libraries. Special attention
shall be paid to control-flow and
data-flow requirements;
[SC1]

 �the safety and SECURITY of
SOFTWARE UNITS that implement
fallback mechanisms, in relation
to the SOFTWARE CATEGORY of
the SOFTWARE COMPONENT;
[SC1]

 ��the relationship between checked
behaviors, monitored beha-
viors, fallback mechanisms, and
analyzed weaknesses.
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

2.4 Operations : monitoring and evolutions

26 Cybersecurity Guidelines for Software Development & Assessment

OBJ_OPE_030

Manage SECURITY operations.
Procedures shall be in place to
address:

 �active monitoring of threats on
SOURCE CODE (including COTS);
[SC0,SC1]

 �active monitoring of threats on
SOFTWARE SUPPORT TOOLS;
[SC1]

 �maintenance activity planning,
including authorizations and
checklist of actions;
[SC0,SC1]

 �backup policy in case of attacks &
corruption;
[SC0,SC1]

OBJ_OPE_030

The acceptance criterion for mana-
gement procedures shall examine:

 �a monitoring to ensure that the
SOFTWARE SYSTEM is up to date
regarding the state of the art in
security. It includes a monito-
ring of weaknesses (CWE) and
publicly-known vulnerabilities
(CVE) from CERT databases. It
includes as well field monitoring
by controlling logs;
[SC0,SC1]

 �a monitoring to ensure that used
SOFTWARE SUPPORT TOOLS are
up to date regarding the known
vulnerabilities;
[SC1]

OBJECTIVES ACCEPTANCE CRITERIA

OBJ_OPE_020

Management mecanisms for
SECURITY updates shall be imple-
mented, and processes for updates
shall be put in place.

 �Updates shall not compromise
the safety & performance of the
COMPUTER-BASED SYSTEM,
and special attention will be paid
to modifications of interfaces
between SOFTWARE UNITS and/
or SOFTWARE COMPONENTS.

 �Authentication processes and
integrity checking processes shall
be part of the update mecha-
nisms.

[SC0,SC1]

OBJ_OPE_020

 �Acceptance mandates that inter-
face compatibility is documented.
[SC0,SC1]

 �When updating a SOFTWARE
SYSTEM or a SOFTWARE COMPO-
NENT,regression testing shall be
used as an additional acceptance
criteria.
[SC1]

 �The integrity (by a checksum or
a CRC) of the update file shall be
verified before the installation.
[SC1]

 �Authentication mechanisms shall
be used before performing updates,
to ensure their authenticity (e.g.
digital signature).
[SC0,SC1]

26 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 27

 �logs of updates and incidents,
based on SECURITY functions for
auditing purpose.
[SC1]

 �the documentation of the proce-
dures, and of its evolutions. This
can include automatically-gene-
rated documentation (e.g. auto-
matic update logs);
[SC0,SC1]

 �all tools and data used to develop
the SOFTWARE SYSTEM shall be
used under version control and
shall be registered to allow a
complete recovery;
[SC0,SC1]

 ��the qualification of operational
staff, with a focus on education
and training.
[SC0,SC1]

OBJECTIVES ACCEPTANCE CRITERIA

OBJ_OPE_040

Remove sensitive information
contained in the SOFTWARE
SYSTEM for the decommission.
[SC1]

OBJ_OPE_040

The acceptance criterion for the
decommission shall include:

 �the physical erasing of all creden-
tials and secrets of the SOFTWARE
SYSTEM;
[SC1]

 ��the deletion of all the sensitive
documentation.
[SC1]

28 Cybersecurity Guidelines for Software Development & Assessment

28 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 29

APPENDIX
Appendix 1 - Security assessment
activity and associated checklist	 30

Appendix 2 - Example of threats
identification & classification	 31

Appendix 3 - References &
existing cybersecurity frameworks 	 34

• References	 34

• �Existing security standards
and frameworks 	 34

30 Cybersecurity Guidelines for Software Development & Assessment

Appendix 1 -
Security assessment activity and associated checklist

OBJECTIVE SC 0 SC I VERIFIED APPLIED

2 SOFTWARE CATEGORY

OBJ_SYS_010 X X

OBJ_SYS_020 X X

OBJ_SYS_030 X X

OBJ_DES_010 X X

OBJ_DES_020 X X

OBJ_DES_030 X X

OBJ_DES_040 X X

OBJ_DES_050 X X

OBJ_DES_060 X X

OBJ_DES_070 X X

OBJ_DES_080 X

OBJ_CHE_010 X

OBJ_CHE_020 X X

OBJ_OPE_010 X

OBJ_OPE_020 X X

OBJ_OPE_030 X X

OBJ_OPE_040 X

Table 2: SECURITY Assessment Checklist

30 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 31

Appendix 2 -
Example of threats identification & classification

In this appendix, examples for the perimeter identification and the threat analysis
objectives are given. Those examples provide an overview of what to expect as
outputs.

Basically, a perimeter identification for a SOFTWARE COMPONENT or a
SOFTWARE SYSTEM consists of identifying every possible inputs or outputs. It
is easier to do it graphically with data flow diagrams, even for large or complex
systems :

HMI
(SW component)

SW system

Backend
(SW component)

Queries

Data

DATAREQUESTS

COMMANDS RESULTS

QUERIES

Backup database
(SW component)

Database
(SW component)

Figure 3: Perimeter identification example.

From this starting point, it is possible to determine what is called «trust
boundaries».

They represent (imaginary) crossing lines where the level of trust in the data
you handle changes, either between the software components, or between one
of the component and an external one (e.g. remote database accessible through
Internet, WebService). In this example, it is safer to check that the data sent
or retrieved from the database is properly sanitized, to avoid SQL injections or
to avoid retrieving corrupt data to the backend. This represents the database
boundary.

It shall also be checked if the program files are not corrupted or tampered with
when launching the software, for example by checking the DLL signatures or the
scheme of the configuration files. This is the storage boundary.

32 Cybersecurity Guidelines for Software Development & Assessment

If the system interacts with users through an HMI or an API, it shall be checked
that the data received is on par with the specifications or the expected values
(e.g. type and length, incorrect encoding, injected statements). This is the system
boundaries.

For the sack of the example, a remote backup database was also added, located
outside the perimeter of the software system. It is used to replicate the main
database and is synced through an uplink (e.g. Internet, local network link). Typi-
cally, it is not expected to blindly replicate the main database if it gets corrupted,
so there shall be additional checks before effectively importing the data. This is
symbolised by the uplink boundary.

SYSTEM
BOUNDARY

STORAGE
BOUNDARY

UPLINK
BOUNDARY

HMI
(SW component)

SW system

Backend
(SW component)

Queries

Data

D
atabase boundary

DATA

FILES & DATA

REQUESTS

COMMANDS RESULTS

DATA

DATA

QUERIES

DATA

Records

Records

Backup database
(SW component)

Database
(SW component)

Program files

Figure 4: Trust boundaries identification example. (Credits: Bureau Veritas)

To fully complete the security system architecture objectives, it is now needed to
perform a threat analysis on each elements from the boundaries identification.
It typically starts with elements that violates the trust boundaries (by crossing
them), as they are more likely to generate security situations. There are a lot of
methodologies or classifications that can be used to classify potential threats,-
such as OCTAVE or STRIDE.

32 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 33

You can find an example of STRIDE applied to the previous system below (only the
critical links are shown):

Boundary 	 Link 	 S T R I D E

System 	 User ->HMI 	 X 		 X		 X 	X

System	 HMI-> User 		 X 		 X

Database 	 Backend -> Database 		 X	 	 X	 X

Database 	 Database -> Backend		 X	 	 X	 X

Uplink	 Database-> Backup		 X	 	 X	 X

Storage	 Program files -> Backend 		 X

Table 3: STRIDE categorization example. (Credits: Bureau Veritas)

As a reminder :

• S: Spoofing

• T: Tampering

• R: Repudiation

• I: Information disclosure

• D: Denial of service

• E: Elevation of privileges

Now that the threats against each critical data flows have been identified, it
is possible to derive security requirements for each of them. For example, to
prevent the tampering of the program files (last row of the table), an integrity
check must be performed (e.g. digitally sign the files, or perform a CRC check at
launch). The technical requirement associated ot this security requirement can
be refined later in the development process (cf. OBJ_DES_010).

34 Cybersecurity Guidelines for Software Development & Assessment

Appendix 3 -
References & existing cybersecurity frameworks

References

 �Guidelines for Development & Assessment of Software, Bureau Veritas,
BV-SW-100, 2016

 �IEC 15408, Information Technology - Security techniques - Evaluation criteria
for IT security, IEC, 2009

 �IEC 62443, Security for Industrial Automation and Constrol Systems, IEC, 2009

 �IEC 61508, Functional safety of electrical/electronic/programmable electronic-
safety-related systems, IEC, 2010

 Microsoft SDL: http://www.microsoft.com/en-us/sdl/default.aspx

 OCTAVE: https://www.cert.org/resilience/products-services/octave/

 STRIDE: https://en.wikipedia.org/wiki/STRIDE_%28security%29

 MITRE CWE: https://cwe.mitre.org/

 MITRE CVE: https://cve.mitre.org/

Existing security standards and frameworks

Common Criteria ~ An international standard for establishing the SECURITY
properties of a digital system. It relies on quality assurance processes to ensure
that the design, development and validation of the system reaches given levels of
SECURITY. The standard is referenced as ISO/IEC 15408.

ISO 27xxx Series of standards to deal with Information SECURITY Management
System.

IEC 62443 ~ An international standard composed of many volumes to deal with-
SECURITY of Industrial Automation and Control Systems. This is aimed to be the
reference in the industry based on a top-down approach (Part 1: General, Part 2:
Policy & Procedure, Part 3: System, Part 4: Component).

NIS Directive ~ The «Directive on Security of Network and Information Systems»
is an European legislation that focuses on network and infrastructure SECURITY.
The Directive mandates the use of risk management practices and systematic
incident reporting for certain digital companies.

34 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 35

Guideline on Cybersecurity Onboard Ships ~ A set of recommendations by actors
of the Marine and Offshore industry, led by the BIMCO shipping association.
The aim is to build SECURITY awareness through a cycle of procedures. It sets
high-level objectives that include onboard software systems assessments.

IEC 61162 ~ An international standard composed of many volumes to deal with
digital interfaces (radio communication) for navigational equipment within a ship.

NIST Cyber framework ~ A set of recommendations of the National Institute of
Standards and Technology (from the US Department of Commerce) on SECURITY.
It gathers referentials, good practices and methodology to handle SECURITY.

SDL ~ The Security Development Lifecycle was developed and is currently main-
tained by Microsoft. It intends to bring some SECURITY procedures and requi-
rements in the software development cycle. For each step of this cycle, the SDL
documentation explains what kind of SECURITY checks can be performed, and
what kind of tools can be used to do so.

RGS ~ A set of requirements issued by the French administration regarding
SECURITY. These requirements are to be followed when a private company has
to operate or interconnect itself with a governmental body, and are thus believed
to be state-of-the-art documentations, especially regarding cryptography.

CSPN ~ A certification by the French National Cybersecurity Agency (ANSSI),
delivered upon successful evaluation of the SECURITY of a digital system. The
evaluation is performed by a licensed service provider.

36 Cybersecurity Guidelines for Software Development & Assessment

36 Cybersecurity Guidelines for Software Development & Assessment Cybersecurity Guidelines for Software Development & Assessment 37

These technical guidelines were
developed thanks to the experts from
the List, an institute of CEA Tech, and
the Bureau Veritas Dependability team.

©
 -

 C
op

yr
ig

ht
 B

ur
ea

u
Ve

ri
ta

s
SA

, P
ho

to
s:

 B
ur

ea
u

Ve
ri

ta
s,

 S
hu

tt
er

st
oc

k
-

Al
l r

ig
ht

s
re

se
rv

ed
 |

B
V-

SW
 2

00
/2

01
70

60
9

Bureau Veritas SA
Société Anonyme – RCS registration number: 775 690 621 R.C.S Nanterre

Head office address: Immeuble Newtime
40/52 Boulevard du Parc – 92200 Neuilly-sur-Seine

software@fr.bureauveritas.com
www.bureauveritas.com

